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Temporary streams in temperate
zones: recognizing, monitoring
and restoring transitional aquatic-
terrestrial ecosystems
Rachel Stubbington,1* Judy England,2 Paul J. Wood3 and Catherine E.M. Sefton4

Temporary streams are defined by periodic flow cessation, and may experience
partial or complete loss of surface water. The ecology and hydrology of these
transitional aquatic-terrestrial ecosystems have received unprecedented attention
in recent years. Research has focussed on the arid, semi-arid, and Mediterranean
regions in which temporary systems are the dominant stream type, and those in
cooler, wetter temperate regions with an oceanic climate influence are also
receiving increasing attention. These oceanic systems take diverse forms, includ-
ing meandering alluvial plain rivers, ‘winterbourne’ chalk streams, and peatland
gullies. Temporary streams provide ecosystem services and support a diverse
biota that includes rare and endemic specialists. We examine this biota and illus-
trate that temporary stream diversity can be higher than in comparable perennial
systems, in particular when differences among sites and times are considered;
these diversity patterns can be related to transitions between lotic, lentic, and ter-
restrial instream conditions. Human impacts on temperate-zone temporary
streams are ubiquitous, and result from water-resource and land-use-related
stressors, which interact in a changing climate to alter natural flow regimes.
These impacts may remain uncharacterized due to inadequate protection of
small temporary streams by current legislation, and hydrological and biological
monitoring programs therefore require expansion to better represent temporary
systems. Novel, temporary-stream-specific biomonitors and multi-metric indices
require development, to integrate characterization of ecological quality during
lotic, lentic, and terrestrial phases. In addition, projects to restore flow regimes,
habitats, and communities may be required to improve the ecological quality of
temporary streams. © 2017 The Authors. WIREs Water published by Wiley Periodicals, Inc.
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INTRODUCTION

Temporary streams (TS) are lotic ecosystems in
which water sometimes stops flowing.1 Defining

TS based on flow intermittence (i.e., the loss of lotic
surface water movement) disguises a critical distinc-
tion: the presence or absence of surface water,2 with
persistent pools being isolated, extensive, or continu-
ous in some systems, whereas others lose all surface
water. A second key distinction between intermit-
tence regimes is predictability: some systems experi-
ence predictable flow cessation or drying during
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summer or dry seasons, whereas unpredictable wet-
dry cycles characterize other streams. Although TS
have been conceptualized as coupled ecosystems
that transition between aquatic and terrestrial
conditions,3,4 current definitions remain freshwater-
focussed. From a terrestrial perspective, TS can be
viewed as linear features that intersect otherwise con-
tinuous habitat patches and experience periodic
inundation. Equally, their substrates can be concep-
tualized as permanent habitats that repeatedly fluctu-
ate between aquatic and terrestrial conditions.5

TS can be the dominant lotic ecosystem type in
arid, semi-arid, and Mediterranean-climate regions,
where their hydrology and ecology are relatively well-
studied. TS are also common in temperate regions with
cooler, wetter climates, their occurrence reflecting inter-
actions between climatic drivers (e.g., precipitation and
temperature), physical catchment characteristics
(e.g., bedrock and overlying sediments), and human
influences (e.g., water abstraction, effluent discharge,
and land use). We complement recent global TS research
by focusing on systems in temperate regions with an oce-
anic influence on the climate (Cfb under the Köppen cli-
mate classification; hereafter, ‘oceanic’). Oceanic
climates are characterized by cool, moderate

temperatures and year-round precipitation, and occur
primarily in north-western Europe and south-eastern
Australasia (Figure 1).

We highlight the diverse range of TS that occur
in oceanic regions, the high biodiversity that these
streams support, and the ecosystem functions that oce-
anic TS provide. We outline threats to the ecological
integrity of TS, and identify opportunities to combat
current impacts within a context of international legis-
lation. We identify research priorities, including the
work needed to facilitate incorporation of TS into
hydrological and biological monitoring programs.
Although variable terminology has been used to
describe TS, for simplicity, we use: TS to refer to eco-
systems that lose flowing surface water and often expe-
rience complete drying, and intermittent to describe
such systems; we recognize that these simple definitions
reflect our primarily freshwater-related perspective.

A DIVERSE RANGE OF TEMPORARY
STREAMS OCCUR IN OCEANIC
REGIONS

Although dry streambeds may be perceived as sym-
bolizing human impacts including water abstraction

FIGURE 1 | Examples of temporary streams in oceanic (Cfb) environments: (a) a snow-covered mountain stream, Scotland, UK; (b) a ponded
peatland tributary of Green Field Beck, England, UK; (c) the bedrock-dominated channel of Deepdale Gill, England, UK; (d) the alluvial plain River
Orari, New Zealand; (e) the forested Lerderderg River, Australia; (f ) the winterbourne headwaters of the chalk River Till, England, UK; and (g) the
karst River Manifold, England, UK. Photo credits: A. Youngson (a); L. Brown (b); J. Clift (c); F. Burdon (d); A. Boulton (e); A. House (f );
R. Stubbington (g).
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and climate-change-related drought,6 TS are natural
ecosystems in oceanic climates (Figure 1). For exam-
ple, flow cessation and drying is natural in channels
underlain by fissured karst and porous chalk bed-
rock, and in alluvial plain rivers flowing over perme-
able deposits (Figure 1). However, TS diversity
remains poorly characterized across oceanic regions,
and in particular, headwater streams that experience
long dry periods have received limited attention,7

despite comprising a considerable proportion of river
networks and making a disproportionate contribu-
tion to regional biodiversity.8

The spatial arrangement of perennial and
intermittent reaches varies between systems. Inter-
mittence may increase gradually with progression
upstream due to seasonal water table fluctuations,
as in ‘winterbourne’ chalk streams9 and systems dis-
secting upland landscapes.7 Elsewhere, a mosaic of
segments with varying intermittence reflects local
changes in geomorphological controls.10 River regu-
lation and water-resource management can pro-
foundly alter flow intermittence regimes. Over-
abstraction can cause naturally perennial reaches to
dry,9 water supply diversions and effluent discharges
can result in artificial perennialization,11 and lotic
reaches upstream of impoundments may become
lentic.

TEMPORARY STREAM COMMUNITIES
ARE BIODIVERSE

TS communities are often dominated by generalists12

(i.e., those also found elsewhere) including resilient
taxa that colonize when appropriate habitats become
available: lotic taxa when flow resumes, lentic taxa
when pools form, and terrestrial taxa when sedi-
ments dry. In addition, where the evolutionary driver
of intermittence is sufficiently strong12 and predicta-
ble13 to favor specialization, TS specialists may
enhance biodiversity. During flowing phases, some
specialist caddisfly larvae inhabit intermittent springs
in karst networks,14 and winterbourne chalk streams
support characteristic plant communities9,15 and spe-
cialist stonefly16 and mayfly17 nymphs, the latter
including nationally rare species in the UK.18

Other aquatic flora and fauna are headwater
specialists,8,9,15 their isolation increasing endemicity,
as reported for a blackfly restricted to few English
winterbourne chalk streams.19 During pool phases,
specialists of temporary lentic habitats may colonize;
for example, caddisfly larvae largely restricted to
floodplain ponds20 may also inhabit TS pools.21 In
addition, terrestrial invertebrate assemblages include

dry-channel specialists in tropical, sub-tropical, and
alpine TS, with inundation-tolerant life stages pro-
posed for some taxa.5,22,23 Such terrestrial specialists
are unknown in oceanic dry channels, which may
reflect the reduced extent of drying or the limited
research conducted.24 Beetles associated with
exposed riverine sediments25 in perennial rivers expe-
rience repeated inundation, and specialists with com-
parable tolerance of hydrological fluctuations may
colonize dry streambeds.

Local-scale Lotic Biodiversity Typically
Declines as Intermittence Increases
During flowing phases, site-specific aquatic commu-
nity diversity (i.e., α-diversity, defined in Box 1 and
explored in Box 2) is typically lower at intermittent
sites compared to equivalent perennial sites, as
demonstrated for invertebrates across climate zones12

and within oceanic regions.19,26 Sites with greater
intermittence are typically inhabited by a subset of
the generalists found at perennial and less intermit-
tent sites.12 However, where flowing phases are long-
lasting and intermittent reaches are short in spatial
extent, site-specific lotic diversity may increase over

BOX 1

TEMPORARY STREAM COMMUNITY
DIVERSITY: DEFINING DIVERSITY

The taxonomic diversity of an assemblage
describes its richness and evenness, i.e., the
number of taxa present and the relative contri-
bution each makes to total abundance. Alpha
(α) diversity considers the taxa present locally,
in an individual sampling unit (Figure 2(a)).
Beta (β) diversity describes heterogeneity
among sites or times and comprises ‘variation’
and ‘turnover’ components. Variation
β-diversity refers to differences in assemblages
among a set of sampling units (Figure 2(b))
whereas turnover β-diversity describes differ-
ences among sampling units positioned along a
spatial (S1, S2) or temporal (T1, T2) environmen-
tal gradient (Figure 2(c)). Together, α and β
components determine gamma (γ), or total
regional-scale diversity. Diversity measures can
also be applied to nontaxonomic categories,
e.g., functional diversity considers the range of
traits (characteristics influencing an organism’s
response to the environment) possessed by taxa
in an assemblage.
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time and become comparable at intermittent and per-
ennial sites27; diversity may even be higher at
intermittent sites due to greater local habitat
heterogeneity.28

The typical pattern of local reductions in diver-
sity with increasing intermittence also characterizes
TS lentic communities, although in contrast to flow-
ing phases, lentic specialists often replace generalist
taxa as wet-phase duration decreases.20,29 Finally,
the dry-phase diversity of terrestrial communities has
been little researched in oceanic TS; a rare study by
Corti and Datry24 found that invertebrate assem-
blages in a dry alluvial plain channel were subsets of
those in adjacent riparian zones. This pattern
matches that observed for lotic invertebrates,12 but
contrasts with Steward et al.’s finding that 20% of
terrestrial invertebrate taxa were unique to dry chan-
nels in alpine, tropical, and sub-tropical climates.22

Further research is required to examine lentic and
dry-phase diversity in TS channels across climate

FIGURE 2 | Concepts of diversity illustrated using a theoretical stream network: (a) α-diversity; (b) variation β-diversity; and (c) turnover
β-diversity along simplified two-site (S1, S2) and two-time (T1, T2) ‘gradients’. Small filled symbols indicate different ‘types,’ e.g., taxa or traits,
their size representing their relative abundance; larger circles and semi-circles indicate sampling units; blue lines represent a plan view of the
stream network. In each theoretical case, the left-hand side of the network (as viewed) has higher diversity than the right-hand side; the patterns
observed in temporary streams are described in Box 2.

BOX 2

TEMPORARY STREAM COMMUNITY
DIVERSITY: ENVIRONMENTAL
HETEROGENEITY PROMOTES HIGH
FLOWING-PHASE BIODIVERSITY

Figure 3 compares typical patterns of α-, β-, and
γ-diversity (defined in Box 1) for communities in
temporary and perennial stream networks. A-
diversity is typically lower in temporary com-
pared to perennial streams (α1, Figure 3(a) and
(b)), reflecting community nestedness: the taxa
at sites with greater intermittence are subsets
of those at perennial and less intermittent
sites.12 Over time, lotic diversity may become
comparable at intermittent and perennial sites
(α2, Figure 3(a) and (b)) as flowing phases
increase in duration, and may even become
higher at intermittent sites (α3, Figure 3
(a) and (b)) characterized by local-scale habitat
heterogeneity.

Typical seasonal progression from flowing,
to pool, to dry conditions represents a temporal
gradient in environmental conditions, and in
response, turnover β-diversity is enhanced by
shifts between lotic (ttβ1), lentic (ttβ2), and ter-
restrial biota (ttβ3, Figure 3(a)), as explored in
Box 3; equivalent habitat changes and related
shifts in community composition are modest in
perennial streams (ttβ1-3, Figure 3(b)). Turnover
β-diversity along a spatial, longitudinal gradient
may also be higher in TS, due to sequential
replacement of taxa adapted to different

degrees of intermittence (stβ1-2, Figure 3(a) and
(b)). Equally, variation β-diversity of lotic com-
munities may be higher among intermittent
sites sampled during flowing phases (vβ1-2,
Figure 3(a)) compared to perennial sites (vβ1,2,
Figure 3(b)), due to spatial variation in environ-
mental conditions.32 Temporal turnover, spatial
turnover, and variation components of
β-diversity combine to increase γ-diversity (γ,
Figure 3(a) and (b)) in temporary compared to
perennial stream networks.
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zones, including characterization of temporal changes
and the extent to which increasing local-scale terres-
trial biodiversity offsets declining aquatic diversity as
intermittence increases.

Environmental Controls on Local
Biodiversity Extend Beyond Habitat
Boundaries
Reach-scale diversity reflects not only timing in a
hydrological cycle and local habitat characteristics,
but also environmental influences and metacommu-
nity dynamics which extend beyond a local site and
interact to influence colonization processes.30,31 Fol-
lowing flow resumptions, the occurrence of perennial
upstream reaches is a notable influence on lotic colo-
nization rates, with drifting organisms promoting
rapid community recovery.10 However, as flowing
phase duration increases, differences in peak lotic
diversity among intermittent sites with and without
perennial upstream reaches may disappear,

highlighting downstream perennial reaches and other
aquatic and terrestrial refuges as additional colonist
sources.12 Following pool formation, persisting lotic
biota are joined by lentic colonists, the latter reflect-
ing interactions between refuge availability and
taxon-specific dispersal abilities31; implications for
pool diversity are described in Box 3. Following

BOX 3

TEMPORARY STREAM COMMUNITY
DIVERSITY: TEMPORAL VARIABILITY IN
LOTIC, LENTIC, AND TERRESTRIAL
COMMUNITY RICHNESS

Figure 4 illustrates how sequential use may
allow lotic, lentic, and terrestrial taxa to share
an instream space.

When flow resumes, lotic taxa richness
increases rapidly as populations from refuges
within the intermittent reach proliferate35 and
colonists arrive from elsewhere36 (Figure 4(a)).
Generalists (which also inhabit perennial streams)
typically dominate this community, particularly as
flowing phase duration increases.37 A few TS spe-
cialists are also present, and lentic generalists
may inhabit suitable microhabitats. If inundation-
tolerant terrestrial taxa exist23 and remain within
the channel, their wet-phase persistence is proba-
bly short-lived.

When flow ceases, extensive and connected,
or sparse and isolated pools may form. Richness
may initially increase in persistent pools as len-
tic colonists join lotic refugees, but later
decreases due to poor habitat suitability, declin-
ing water quality, and intense biotic interac-
tions (Figure 4 (b)).5 TS pool specialists remain
undocumented in temperate regions but may
comprise a comparable biota to other tempo-
rary lentic waters20; limited global evidence
suggests such specialists as minor contributors
to pool communities.38

During dry phases, generalist terrestrial taxa
arrive from the riparian zone and catchment,
increasing in richness as the dry phase proceeds
(Figure 4(c))39; dry-channel specialists have not
been identified in any temperate TS.5 Aquatic
richness declines as desiccation-sensitive taxa
are lost, but the ‘seedbank’ of desiccation-
tolerant aquatic life-stages that persists within
drying sediments40 maintains moderate rich-
ness.4,41 Seedbank richness declines with sedi-
ment moisture, making oceanic assemblages
relatively taxa rich.40,41
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FIGURE 3 | Typical patterns of alpha (α), beta (β), and gamma
(γ) diversity of communities in (a) a temporary stream network and
(b) a perennial stream network, at multiple sites during flowing
phases (blue lines), and at one site during an annual cycle (black
circles). The size of blue, filled symbols allows comparison of panes
(a) and (b) and is proportional to diversity, i.e., larger symbols indicate
higher diversity at temporary or perennial sites; symbol sizes should
not be compared within a pane. Shapes indicate differences in
community composition. Abbreviations: stβ, ttβ and vβ, spatial
turnover, temporal turnover, and variation β-diversity, respectively.
Superscript letters allow comparison of (a) and (b). Definitions of
diversity measures are provided in Box 1 and patterns are described in
Box 2.
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drying, the rate and extent of colonization by terres-
trial organisms may reflect the characteristics of mar-
ginal habitats, such as riparian vegetation, bank-top
height, bank slope, and bank-face materials.25

Research is needed to examine the environmental
controls of dry-phase colonization trajectories, and
to identify factors promoting dry-phase community
establishment.

Spatial and Temporal Environmental
Variability Increases Biodiversity in TS
Transitions between flowing, pool, and dry phases
result in greater temporal variation in environmental
conditions in TS compared to perennial streams. In
response, shifts between communities dominated by
lotic, lentic, and terrestrial taxa mean that intermit-
tent sites can have higher biodiversity than perennial
sites when an annual cycle is considered,33 as
explored in Boxes 2 and 3. Bogan and Lytle
described this sequential use of one location by lentic
and lotic taxa as ‘taxonomic time-sharing’34, a

concept that we suggest be extended to encompass
terrestrial taxa (Figure 4, Box 3).

As well as temporal changes, transitions in
environmental conditions along spatial, longitudinal
gradients may enhance biodiversity (i.e., spatial
turnover β-diversity, explored in Box 2) in TS com-
pared to equivalent perennial stream lengths, with
sequential taxon replacements reflecting adaptation
to different degrees of intermittence. For example,
the macrophyte communities of chalk stream head-
waters are characterized by longitudinal zonation,
with specific assemblages associated with perennial
reaches and those with typical annual dry periods of
2–4, 4–6, and >6 months42 (Figure 5); site-specific
community composition also differs between wet
and dry years. Similarly, spatial environmental het-
erogeneity among multiple sites32 may mean that
flowing-phase variation in lotic community composi-
tion (i.e., variation β-diversity, explored in Box 2) is
higher among intermittent compared to perennial
sites, as observed in arid,32 subtropical,2 and Medi-
terranean regions.28 During dry phases, differences
in terrestrial invertebrate assemblage composition
increase among-reach diversity,24 aligning with
aquatic patterns.2,28,32 Further research is required
to compare regional patterns, and to examine biota
previously combined as “nonaquatic” in freshwater
studies.15,42

Endemic species including TS and headwater
specialists also increase diversity among sites,8,19

with one study of seven Mediterranean-climate head-
water TS describing 13 new aquatic or semi-aquatic
insect species.28 The range of taxa restricted to iso-
lated headwaters may remain underestimated, in par-
ticular for small and taxonomically challenging
organisms.43

Regional-scale aquatic diversity (i.e., γ-diver-
sity, explored in Box 2) may be highest in systems
with greater intermittence due to spatial and tempo-
ral environmental heterogeneity.2 In addition, total
TS diversity estimates are increased when both
aquatic and terrestrial taxa are recognized, as
recorded for invertebrate24 and plant commu-
nities.42 Further collaborations between aquatic and
terrestrial ecologists are needed to quantify the total
biodiversity of biotic groups across full hydrological
cycles.5,24,44 In addition, whereas macroscopic com-
munities of oceanic TS including chalk streams and
alluvial plain rivers are sufficiently well-
characterized to warrant description of general pat-
terns, the biodiversity of systems including upland
headwater TS requires further research, as do under-
represented biotic groups including meiofauna and
diatoms.

FLOWING

Key

Lotic taxa          

Lentic taxa      

Generalist taxa      ? Hypothesized pattern 

   Specialist taxa 

(a)
(b)

(c)

Terrestrial taxa    Symbol size reflects relative taxa richness

FIGURE 4 | Turnover of lotic, lentic, and terrestrial taxa during (a)
flowing, (b) pool, and (c) dry habitat phases in a temporary stream
reach. Arrows indicate a typical annual cycle of environmental
changes; reversals (e.g., transitions from pool to flowing conditions)
and omissions (e.g., flowing-dry-flowing or flowing-pool-flowing
transitions) may also occur. Taxonomic patterns are those observed
and hypothesized for invertebrate communities, with some plant
community data suggesting comparable patterns.
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TEMPORARY STREAMS HAVE
IMPORTANT ECOSYSTEM
FUNCTIONS

TS, including dry channels, have recently been concep-
tualized as biologically active, biodiverse, and impor-
tant in ecosystem functioning.23 However, some wider
roles, such as acting as navigation corridors for biotic
migrations across landscapes, may be restricted to
Mediterranean45 and arid46 regions with extensive
intermittent networks (Table 1). Other functions may
also vary depending on climate.47 For example, dry
streambeds in arid landscapes may be moist microhabi-
tats favored by small mammals22 whereas those in
tropical regions may be hotter and drier than the adja-
cent riparian zone and so avoided by fauna.46 In con-
trast, pools may provide drinking water for livestock
and wild animals across climate zones, particularly
during droughts.48 Some ecosystem functions may dif-
fer depending on dry phase duration. For example,
occasional flow in arid streams provides rare opportu-
nities for aquatic organism dispersal23; in contrast,
occasional drying of oceanic TS may facilitate dispersal
of terrestrial organisms including mammals49 and tur-
tles50 across landscapes usually fragmented by water.51

Other functions may be broadly comparable across cli-
mates, including organic matter processing: dry phases
allow organic matter to accumulate before release and
transformation following rewetting and flow
resumptions.52

Ecosystem services that benefit people may also
differ regionally, with cultural services reflecting the
ubiquity of TS (Table 1). Native Australian folklore
refers to TS fauna, and recreational events are held in
dry channels.23 In contrast, dry channels are viewed as
symptomatic of poor ecosystem health in oceanic sys-
tems such as English chalk streams,6,15 with recrea-
tional uses such as fishing and associated perceptions
of high value largely restricted to flowing phases.
Linked to these contrasting public perceptions of
‘value’, TS provisioning services include food and
water in arid landscapes53 but are minimal in devel-
oped temperate regions. In contrast, the regulating
service of flood mitigation, common to perennial and
intermittent streams, may be greater in densely popu-
lated temperate zones.

As well as supporting high biodiversity includ-
ing rare and endemic taxa, TS provide refuges for spe-
cialists outcompeted by generalists in perennial
streams. For example, the absence of a dominant
grazing snail has been linked to greater diversity of
other invertebrate grazers in TS.8,28 Equally, natives
threatened by non-native invasive species may use TS
as refuges. For example, a greater decline in non-
native than native fish richness with increasing inter-
mittence has been attributed to poor adaptation to
habitat contraction in Mediterranean streams.57

TS biota perform important ecosystem func-
tions. During wet phases, aquatic invertebrates sup-
port food webs that include fish as top aquatic

FIGURE 5 | In chalk streams including the River Misbourne (England, UK), macrophyte communities are characterized by longitudinal zonation
during the summer months, and differ between sites with (a) perennial flow, (b) shorter (typically 2-4 month) and (c) longer (typically 4-8 month)
annual dry periods, as described by Westwood et al..33 Photo credits: J. England (a); N. Holmes (b-c).
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TABLE 1 | Temporary stream (TS) ecosystem functions provided by (a) dry channels (b) pools and (c) flowing stream habitats. Evidence of each
function is provided at a global scale and compared to oceanic zones, with functions hypothesized where data is lacking.

Ecosystem
function

(a) Dry channels (b) Pools (c) Flowing streams

Global evidence
Oceanic zone
function Global evidence

Oceanic zone
function Global evidence

Oceanic zone
function

Migration/
navigation
corridors
for
vertebrates

Used by small
mammals,
reptiles, and
birds in
deserts46 and
Mediterranean
TS45

Lower importance
due to limited
spatial and
temporal extent;
local movements
may be
facilitated

None None Established (but
contested54)
perennial river
function; likely for
TS

Lower
importance
due to limited
spatial and
temporal
extent; may be
used by bats.

Inhabited by
terrestrial
vertebrates

Moist habitat used
by hares, mice,
and shrews in
Namib Desert46

Lower importance
due to
availability of
moist riparian
habitats

Not known Not known Not known Not known

Habitat for
specialist
biota

Dry channel
invertebrates in
tropical and
alpine streams22

Lower importance
due to shorter
dry phases;
none identified24

Not known Not known Invertebrate specialists
dominate some arid
TS55

Invertebrate
specialists
occur in TS
and springs14

Refuge for
lotic taxa

Seedbank
established as
survival
mechanism
across climate
zones40

Enhanced function
in oceanic TS
due to high
sediment
moisture
content4,40

Established, major
dry-phase
refuge, e.g., in
Mediterranean,
semi-arid and
arid streams55

Refuge for many
taxa, particularly
if habitats are
similar to
flowing streams,
e.g., in
regulated /
lowland
streams56

Refuges from
competitive taxa
including non-native
invasive taxa, and
from predation by
fish in
Mediterranean28,57

and other
temperate TS58

Greater
importance
due to
widespread
river
regulation and
invasive
species in
perennial
streams

Dispersal Easier cross-
channel
dispersal by
terrestrial
organisms in
arid zones due
to longer dry
phases

Higher importance
due to limited
spatial and
temporal
windows in
which terrestrial
organisms can
disperse51

May facilitate local
dispersal of
lentic taxa
between pools

May facilitate local
dispersal of
lentic taxa
between pools

Dispersal of aquatic
and riparian flora
and fauna
established across
climate zones

Greater dispersal
of aquatic and
riparian flora
and fauna due
to long wet
phases

Carbon
cycling and
organic
matter
processing

CO2 efflux from
dry organic
matter
quantified in a
Mediterranean
river and up-
scaled to other
regions59

Not calculated for
temperate
zones;
considered
lower than arid
zones59

Organic matter
retained and
processed in
pools

Organic matter
retained and
processed in
pools60

Organic matter
processing
following flow
resumptions
established across
climate zones

Greater
processing in
oceanic zones:
processing
declines as
drying
increases61

Recreation Events, e.g. a ‘dry
river race’ held
in Australia;
provide shaded
walking routes
e.g. in Spain

Limited importance
due to extent of
larger systems;
TS in karst
landscapes can
act as caving
entry points

Waterholes in
Australia
provide interest
along walking
routes

Reduced
importance due
to limited spatial
and temporal
extent

Established across
regions
e.g. adjacent
walking routes

Lower
importance;
routes more
likely to follow
perennial
rivers

(continued overleaf )
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predators63 and extend into riparian and terrestrial
habitats: adults of insects with aquatic juveniles subsi-
dize terrestrial food webs upon emergence.64 These
pulsed inputs are pronounced in TS if insects emerge
en masse before drying, and where high aquatic insect
abundance is linked to exclusion of predators by
intermittence.65 As drying phases proceed, aquatic
invertebrates trapped in contracting pools or stranded
on dry streambeds are rich pickings for riparian pre-
dators.66 Equally, riparian and terrestrial organisms
that colonize dry channels may be engulfed when flow
resumes,52 and subsidies to terrestrial environments
are therefore reciprocated by energy inputs to aquatic
webs, supporting early flowing-phase colonists.58

INTERACTING STRESSORS
COMPROMISE TEMPORARY STREAM
HEALTH

Changing rainfall and runoff patterns are altering
flow regimes,67 although patterns are difficult to
characterize68 or to relate to climatic drivers.69

Global-scale models predict future decreases in sum-
mer discharge in the northern hemisphere,67 and
some studies indicate future declines in mean annual
runoff in oceanic western Europe,70 causing summer
discharge reductions.69,71 Hydrological extremes
including drought (i.e., significantly below-average
water availability over an extended period72) may
also be increasing in some global73 and European74

regions, causing drying of oceanic rivers previously
considered perennial.41 However, the inherent varia-
bility of drought disturbances and their interaction
with nonclimatic drivers of change make both recent
trends and future predictions difficult to confirm.69,75

Climatic drivers interact with groundwater and
surface water abstractions in temperate regions

dominated by urban and agricultural land uses, caus-
ing or exacerbating shifts to greater intermittence,
including artificial drying events in perennial streams
and increased drying in TS. For example, decreased
discharge in the intermittent River Selwyn in
New Zealand has been linked to abstraction for irriga-
tion76; the naturally perennial River Garry in Scotland
experienced regular drying due to water diversion for a
hydroelectric scheme77; and peak water consumption
may exacerbate widespread discharge reductions dur-
ing droughts.74 However, patterns vary depending on
other environmental factors including geology: streams
underlain by aquifers with low storage capacity may
experience severe discharge declines during droughts,
whereas in those supplied by porous aquifers, winter
recharge may sustain summer flows.74 In addition,
widespread river regulation in temperate regions may
limit natural high- and low-flow extremes, with com-
pensation flows released from impoundments main-
taining a minimum discharge that reduces
intermittence. Agricultural land use can also reduce
hydrological variability and cause artificial perenniali-
zation; for example, small agricultural dams release
water downstream at a steady rate for irrigation.78

The effects of altered hydrology and other
human influences on instream communities may be
considerable, especially when artificial temporary or
perennial streams are created. Increases in intermit-
tence typically reduce aquatic biodiversity, as com-
munities become subsets of taxa associated with
perennial flow12. Contrary to common perceptions,79

artificial perennialization also reduces ecological
quality, because TS specialists may be lost as biotic
interactions with competitors and predators intensify.
Where lost taxa played important ecosystem roles,
for example as top predators80 or leaf-litter shredders
that release energy for other feeding groups,61

TABLE 1 | Continued

Ecosystem
function

(a) Dry channels (b) Pools (c) Flowing streams

Global evidence
Oceanic zone
function Global evidence

Oceanic zone
function Global evidence

Oceanic zone
function

Provision of
food and
water for
people

Aestivating fish
consumed in
Botswana; cattle
grazed in Egypt;
crops grown in
India; water
found by
digging23

Not known Drinking water for
deer, humans,
and livestock in
arid and semi-
arid zones48,62

Lower importance
due to higher
water
availability in
oceanic zones

Drinking water for
humans and
livestock in arid
zones62

Groundwater
and surface
water
abstraction for
public water
supply and
agriculture
across
temperate
zones9
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communities can shift to alternate states.81 Loss of
natural hydrological variability threatens organisms
adapted to fluctuating conditions, and equally, where
shifts between flow extremes become more common,
survival within refuges may be compromised.41

REGULATORY MONITORING
SHOULD BETTER REPRESENT
TEMPORARY STREAMS

The EU Water Framework Directive (WFD) requires
EU Member States to attain at least ‘good ecological
status’ in surface water bodies, with status deter-
mined by monitoring to compare sites with unim-
pacted ‘reference conditions’ for characterized river
typologies. Equally, designation as a protected Spe-
cial Area of Conservation (SAC) under the EU Habi-
tats Directive requires monitoring and reporting of
the conservation status of Annex I habitats and
Annex II species. SACs include intermittent river
reaches, for example, some chalk streams in southern
England are designated for their plant communities
and for individual invertebrate and fish species. The
EU Biodiversity Strategy to 2020 has set specific tar-
gets for the attainment of ‘favorable’ SAC conserva-
tion status, determined for habitats by comparison
with natural ecosystem ‘structure and function’.

In these policy and legislative contexts, recogni-
tion and mapping of TS represents a fundamental
first step towards their monitoring and protection in
and beyond temperate zones.82 Another key priority
is classification of TS into ecologically robust typolo-
gies, including discrimination between artificial and
natural perennial and intermittent flow.82–84 Ecologi-
cally relevant classification should recognize the flow
regime, facilitated by catchment-scale hydrological
monitoring that includes intermittent reaches and
that differentiates between lentic and dry no-flow
states. However, underrepresentation of TS in gau-
ging station networks,85 limited characterization of
longitudinal hydrological variability, and difficulties
in distinguishing between different no-flow states
make such informative, long-term hydrological data
scarce. In addition, the indices used to classify hydro-
logical regimes have been developed for perennial
streams86 and therefore require supplementation in
TS by new descriptors of the magnitude, frequency,
duration, timing, and rate of change for flow-
cessation and drying events.85,87 Qualitative descrip-
tion of TS typologies based on expert opinion may
be a necessary interim measure to facilitate TS moni-
toring; hydrologically relevant environmental
datasets,88 remote sensing data,87 and citizen science

initiatives89 may inform such designations. However,
regardless of data availability, TS classification is
challenging because flow regimes are highly variable
within and between systems and years.

Following recognition, mapping, and classifica-
tion of TS, the communities characterizing unim-
pacted ecological quality (i.e., WFD ‘biological
quality elements’ indicative of reference conditions90;
Habitats Directive ‘qualifying features’ of favorable
status) should be established, to facilitate robust
future status assessments. However, reference condi-
tions are conceptualized as a single benchmark
against which other water bodies can be compared,
which may be inadequate to represent TS: ecosystems
that, by definition, transition between lotic, lentic,
and terrestrial conditions in both space and time.
Recent Mediterranean research initiatives87,91,92 have
made recommendations that may inform adaptation
of biomonitoring programs in oceanic regions to
characterize peak aquatic community diversity
despite this variability. Specifically, the use of estab-
lished perennial-stream metrics may be appropriate
in TS flowing-phase assessments, if flowing phases
are sufficiently long and predictable to allow sam-
pling that coincides with peak diversity92 and to
allow robust status determination based only on lotic
assemblages.

However, sensitivity to intermittence and to
environmental degradation typically covary, mean-
ing that metrics developed to quantify community
integrity in perennial streams may underestimate the
ecological quality of TS, particularly where flowing
phases are short and unpredictable.93 Equally, per-
ennial metrics may overestimate TS ecological status
if applied to samples collected as flow recession
forces organisms (whose persistence is threatened by
declining water quality) to share a shrinking sub-
merged habitat area. Development of TS-specific
indices is therefore required,92 and balanced, robust
ecological status assessments should employ novel
multi-metric indices that integrate community-level
data encompassing the temporal (i.e., lotic, lentic,
and terrestrial phase) and spatial (e.g., longitudinal)
variability characteristic of TS, and that use hydro-
logical data to inform interpretation of sampled
assemblages. Research priorities include the develop-
ment of dry-phase biomonitors, with terrestrial
invertebrates suggested as one potential indicator of
TS dry-phase health.23 Functional as well as struc-
tural (i.e., taxonomic) approaches to community
characterization should be investigated,84 and envi-
ronmental DNA is a potential game-changer that
integrates terrestrial and aquatic biodiversity
information.94
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In association with the development of new TS-
specific indices, national regulatory agencies may seek
to expand regulatory monitoring networks to
improve representation of TS,95 firstly, to recognize
that multiple monitoring sites may be needed to repre-
sent variation in environmental conditions and cate-
gorized ecological status of water bodies with both
perennial and intermittent reaches. Secondly, expan-
sion may be appropriate to better represent headwater
streams, which, despite their recognized biodiversity
value and ecosystem service provision,47,96 may be
excluded from WFD-related monitoring programs
due to their size: the WFD target of good ecological
status applies to ‘all bodies of surface water,’97 but
streams with catchment areas <10 km2 are not classi-
fied as water bodies unless other criteria are met.98

Supplementary national monitoring and reporting
initiatives that have examined headwaters in99 and
beyond100 oceanic regions may prove informative.

RESTORATION MAY BE NEEDED TO
IMPROVE TEMPORARY STREAM
HEALTH

Where TS fail to reach acceptable ecological stan-
dards, projects to restore flow regimes, habitats, spe-
cies, and communities may be implemented, with the
European Biodiversity Strategy setting specific targets
for the enhancement of ecosystems and their service
provision. Globally, ambitious schemes have restored
natural intermittence in artificially perennial streams
subjected to long-term regulation101 and, following
flow restoration in over-abstracted English chalk
streams, characteristic winterbourne macrophyte
communities replaced terrestrial grasses15 and rare
aquatic invertebrates recolonized.35 Such interven-
tions inform abstraction management strategies
implemented by national regulatory agencies, and
help to characterize the environmental flows (eflows)
required to sustain biodiversity and ecosystem ser-
vices in TS. However, extension of the eflow concept
to TS remains very rare globally,102 and should be
further researched, including recognition of the eco-
logical value of lotic, lentic, and terrestrial phases.

Restoration may also involve enhancement of
riparian vegetation. During dry phases, reduced
evaporation from shaded margins and increased
water retention by organic-rich sediments reduce
moisture loss from channels with vegetated banks,
promoting survival of aquatic biota including
desiccation-tolerant invertebrate seedbank inhabi-
tants.40 However, careful planting is needed to pro-
mote diversity across biotic groups, for example

dense vegetation that maintains seedbanks may limit
instream macrophyte assemblages.42 Bankside vege-
tation also provides habitat for a riparian fauna
including potential dry-channel colonists, and, as in
perennial systems, stabilizes banks and intercepts pol-
luted water. The wider services provided by riparian
vegetation mean that planting schemes implemented
with nonecological goals (e.g., flood mitigation; cli-
mate change adaptation) may have serendipitous
effects on TS ecosystem health.

Projects involving physical alteration of the
streambed and banks (e.g., sediment manipulation,
channel remeandering, bank reprofiling, and bed
raising) may be implemented to restore the natural
habitat characteristics of TS channels. Such interven-
tions should be informed by new research to identify
the bank and riparian features promoting coloniza-
tion of dry channels by terrestrial organisms. In addi-
tion, any restoration activity that disturbs the
channel requires careful design informed by the life
histories of TS taxa, for example, to avoid the loss of
dormant aquatic life stages persisting within dry
sediments.19

CONCLUSION

Human activity has altered patterns of flow intermit-
tence, including artificial shifts to intermittent or per-
ennial flow as well as physical habitat modification.
Altered flow regimes change biological communities
and ecosystem functions, with consequences for local
species persistence, wider food web complexity, and
even global biogeochemical cycling. The biodiversity
and ecosystem services of natural TS are gaining rec-
ognition by ecological researchers,103 policy
makers104 and the public,105 but remain poorly stud-
ied compared to perennial rivers, especially outside
of Mediterranean and arid regions. Recent advances
in these regions may inform wider research efforts to
recognize, characterize, monitor, and restore TS at
local, regional, national, and international scales,
including initiatives in oceanic zones.

Globally, TS research remains freshwater-
focussed, with few studies of dry-channel ecology39

and fewer still that integrate terrestrial and aquatic
components.24 Such integrative research is needed to
improve understanding of spatiotemporal variability
in community composition as ecosystems transition
between lotic, lentic, and terrestrial states.30,44 In
addition, consideration of all instream communities
should inform the development of holistic ecological
health assessments that allow regulatory agencies to
determine whether legislative requirements have been
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met. The accuracy of such assessments may be
improved through recognition of taxon-specific co-
sensitivity to intermittence and environmental
quality,93 and of broad-scale influences on commu-
nity composition including metacommunity dynamics
and catchment land uses.31,106 Where interventions
to enhance ecological quality are required, these are
also most effective (but most challenging) when
implemented at broad spatial scales that recognize

landscape-level influences. In contrast, headwater
catchments with minimal anthropogenic land use
may provide opportunities to maximize biodiversity
gains.107 Collaborative, interdisciplinary, interna-
tional projects that unite academic researchers, pol-
icymakers, and regulatory agencies will bring
together currently fragmented knowledge and begin
to address the research and management challenges
that TS present.107,108
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